Monatshefte für Chemie 102, 1037—1047 (1971) © by Springer-Verlag 1971

Massenspektrometrische Untersuchungen einfacher und gemischter Phosphortrihalogenide

Von

K. Varmuza¹ und P. Krenmayr

Aus dem Institut für Allgemeine Chemie der Technischen Hochschule Wien, A-1060 Wien, Lehargasse 4

Mit 4 Abbildungen

(Eingegangen am 24. Februar 1971)

Mass Spectrometric Investigations of Phosphorus Trihalides and Mixed Phosphorus Trihalides

The mass spectra of mixtures of PCl₃, PBr₃, and PI₃ contain molecular ions of all phosphorus trihalides, which are possible by halogen exchange. Appearance potential measurements gave the heats of formation $\Delta H_B (\text{PCl}_2\text{Br})_g = -274 \pm 10 \text{ kJ/mol}$ and $\Delta H_B (\text{PClBr}_2)_g = -212 \pm 10 \text{ kJ/mol}$. The ionization energies of Cl, Br, I containing phosphorus trihalides are closely related to the average electronegativity of the halogen atoms. Collision induced fragmentations showed for ions, that P-Br bonding is weaker than P-Cl bonding.

Die Massenspektren von Gemischen aus PCl₃, PBr₃ und PJ₃ zeigen die Molekülionen aller durch Halogenaustausch möglichen Phosphortrihalogenide. Auftrittspotentialmessungen lieferten die Bildungsenthalpien $\Delta H_B (PCl_2Br)_g = -274 \pm 10 \text{ kJ/mol}$ und $\Delta H_B (PClBr_2)_g = -212 \pm 10 \text{ kJ/mol}$. Die Ionisierungsenergien der Phosphortrihalogenide, die Cl, Br, J enthalten, stehen in enger Beziehung zur durchschnittlichen Elektronegativität der Halogenatome. Wie stoßinduzierte Zerfälle ergaben, ist in den Phosphorhalogenidionen die P-Br-Bindung schwächer als die P-Cl-Bindung.

Einleitung

Es ist bekannt, daß in Mischungen aus Phosphortrihalogeniden ein Austausch der Halogenatome erfolgt, wobei sich gemischte Phosphortrihalogenide von der Art PX_2Y und PXYZ bilden. Die Geschwindigkeit der Austauschreaktion steigt von Fluor über Chlor und Brom zu

¹ Teil der Dissertation K. Varmuza, Massenspektrometrische Untersuchungen an einigen Phosphortrihalogeniden, Techn. Hochschule Wien, 1970.

Jod an; beispielsweise stellt sich im Gemisch aus PCl_3 und PBr_3 das Gleichgewicht bei Raumtemperatur etwa innerhalb einer Stunde ein^{2, 3}. Einige gemischte Phosphortrihalogenide, z. B. PF_2Cl und PF_2Br , sind isoliert worden, während andere, z. B. PCl_2Br und $PClBr_2$, nur im Gleichgewicht mit den reinen Halogeniden mit Hilfe der Ramanspektroskopie^{3,4} und der magnetischen Kernresonanz⁵ nachgewiesen wurden. PBr_2J und $PBrJ_2$ wurden auch in einem Massenspektrum gefunden². In der vorliegenden Arbeit¹ wird über massenspektrometrische Untersuchungen an Gemischen aus PCl_3 und PBr_3 sowie an einigen Jod enthaltenden Phosphortrihalogeniden berichtet.

Massenspektren und Klastogramme

Das Massenspektrum eines Gemisches aus PCl₃, PBr₃ und PJ₃ zeigt die Molekülionen aller durch Halogenaustausch möglichen Phosphortrihalogenide von der Art PX₃, PX₂Y und PXYZ. Um ein Bild über Gleichgewichtskonzentrationen zu erhalten, wurden Mischungsreihen aus PCl₃ und PBr₃ untersucht und die relativen Ionenintensitäten gegen den Molenbruch der Mischung aufgetragen (Abb. 1). Da die Proportionalitätsfaktoren zwischen Konzentration und Ionenintensität bei den vier Substanzen verschieden sind, können quantitative Aussagen aus diesem Diagramm nicht gemacht werden.

Trägt man die auf den Gesamtionenstrom bezogenen Ionenintensitäten gegen die Elektronenenergie auf — Darstellungen dieser Art werden als Klastogramme bezeichnet⁶ —, so erhält man bekanntlich für Molekül- und Fragmentionen verschiedene Kurvenformen. Wie das Klastogramm (Abb. 2) einer Mischung aus PCl₃ und PBr₃ zeigt, liefern

² A. H. Cowley und S. T. Cohen, Inorg. Chem. 4, 1221 (1965).

³ *M. L. Delwaulle* und *M. Bridoux*, C. r. hebdomad. Sé. Acad. Sci. **248**, 1342 (1959).

⁴ a) B. Trumpy, Z. Physik 68, 675 (1931); b) O. Burkard, Z. Phys. Chem.
B 30, 298 (1935); c) O. Theimer, Acta Phys. Austr. 1, 188 (1948); d) M. L. Delwaulle, C. r. hebdomad. Sé. Acad. Sci. 222, 1391 (1946); 224, 389 (1947);
c) M. L. Delwaulle und F. François, C. r. hebdomad. Sé. Acad. Sci. 220, 817 (1945); 223, 796 (1946); f) M. L. Delwaulle und F. François, J. chim. phys.
46, 87 (1949); g) M. L. Delwaulle und G. Schilling, C. r. hebdomad. Sé. Acad. Sci. 244, 70 (1957); h) M. L. Delwaulle, M. Cras und M. Bridoux, Bull. soc. chim. France 1960, 786; j) F. François und M. L. Delwaulle, J. chim. phys.
46, 80 (1949); k) G. Schilling, C. r. hebdomad. Sé. Acad. Sci. 245, 2499 (1957);
l) G. Nagarajan, J. R. Durig und A. Müller, Mh. Chem. 98, 1545 (1967).

⁵ a) E. Fluck, J. R. van Wazer und L. C. D. Groenweghe, J. Amer. Chem.
Soc. 81, 6363 (1959); b) E. Fluck, Angew. Chem. 71, 377 (1959); c) A. Müller,
O. Glemser und E. Niecke, Z. Naturforsch. 21 b, 732 (1966); d) A. Müller,
E. Niecke und O. Glemser, Z. allgem. Chem. 350, 256 (1967).

⁶ R. W. Kiser, Introduction to mass spectrometry and its applications. Englewood Cliffs, N. J.: Prentice-Hall. 1965.

PCl₂Br und PClBr₂ die gleiche Art von Molekülionen wie die reinen Phosphortrihalogenide. Der Intensitätsverlauf der Fragmentionen liefert ein anschauliches Bild der unimolekularen Zerfallsreaktionen in der Ionenquelle. So liegt z. B. das Maximum der Kurve für PCl₂+ etwa bei jener Elektronenenergie, bei der die Bildung von PCl⁺ einsetzt. PCl⁺

Abb. 1. Verlauf der relativen Ionenintensitäten I in verschiedenen Mischungen aus PCl₃ und PBr₃. I in % des Gesamtionenstromes der Ionen PX_n^+ $(n = 0, 1, 2, 3; X = Cl, Br, alle Isotopen); X_{PBr_3}$ ist der Molenbruch bei Herstellung der Mischung

kann durch einen Zerfall von PCl_2^+ und/oder PCl_3^+ entstehen; in beiden Fällen sinkt die Intensität von PCl_2^+ . Analoges gilt für die anderen Fragmentionen.

Stoßinduzierte Ionenzerfälle

Unter Anwendung der Defokussierungstechnik⁷ konnten bei normalen Vakuumbedingungen im Massenspektrometer (Anzeige des *Penning*manometers im Ionenquellenteil $5 \cdot 10^{-7}$ bis $5 \cdot 10^{-6}$ Torr) zahlreiche Ionenzerfälle während des Fluges zwischen Eintrittsspalt und Kondensator nachgewiesen werden (Abb. 3). Die Druckabhängigkeit der Inten-

⁷ a) K. R. Jennings, in: Some newer physical methods in structural chemistry (R. Bonnet und J. G. Davis, Hrsg.), Proc. Symp. Oxford 1966, S. 105. London: United Trade Press Ldt. 1967; b) T. W. Shannon, T. E. Mead, C. G. Warner und F. W. McLafferty, Anal. Chem. **39**, 1743 (1967).

sitäten der metastabilen Peaks zeigte, daß die Reaktionen stoßinduziert sind.

Einem halbquantitativen Vergleich der relativen Häufigkeiten der stoßinduzierten Zerfälle diente der Quotient I_m/I_n (Intensität der während des Fluges gebildeten und unter defokussierenden Bedingungen

Abb. 2. Klastogramm einer Mischung aus PCl₃ und PBr₃ (2:1 molar). Ionenintensitäten I in % des Gesamtionenstromes der Ionen PX_n^+ (n = 0, 1, 2, 3; X = Cl, Br, alle Isotopen); E ist die nicht korrigierte Elektronenenergie in eV

gemessenen Tochterionen/Intensität der Mutterionen unter normalen Meßbedingungen). I_m/I_n ist bei stoßinduzierten Zerfällen vom Druck in der Zerfallszone abhängig und lag bei den untersuchten Reaktionen in der Größenordnung 10^{-4} bis 10^{-2} .

Das Verhältnis zweier Quotienten I_m/I_n für zwei verschiedene stoßinduzierte Zerfallsreaktionen, die unter gleichen Bedingungen gemessen wurden, war jedoch innerhalb der Meßgenauigkeit druckunabhängig. Die in Tab. 1 zusammengefaßten Ergebnisse zeigen, daß die Zerfälle $PX_{3^+} \rightarrow PX_2^+ 5$ - bis 10mal so häufig sind, wie die Zerfälle $PX_{3^+} \rightarrow PX^+$. Enthält ein Ion Chlor und Brom, so erfolgt die Bromabspaltung wesentlich häufiger als die Chlorabspaltung. Es ist daher anzunehmen, daß die Bindung P—Br im Ion schwächer ist als die Bindung P—Cl, wie das auch bei den neutralen Molekülen PX_3 und PX_2Y der Fall ist^{41, 8}.

Der Wirkungsquerschnitt der stoßinduzierten Zerfälle kann nur näherungsweise angegeben werden, weil in der Zerfallszone keine exakte Druckmessung möglich war. Da die Fluggeschwindigkeit der Ionen

Abb. 3. Nachgewiesene Ionenzerfälle während des Fluges zwischen Eintrittsspalt und Kondensator. Probe: PCl₃ + **P**Br₃; strichlierte Linien bedeuten sehr intensitätsschwache metastabile Peaks

wesentlich größer ist als die thermische Geschwindigkeit der Gasmoleküle in der Zerfallszone, gilt die Beziehung⁹

$$N = N_0 \cdot e^{-d} \cdot q \cdot x$$

 N_0 ist die Zahl der in die Zerfallszone eintretenden Ionen, $(N_0 - N)$ die Zahl der zerfallenden Ionen, welche registrierbare Tochterionen liefern, d die Teilchenzahldichte des durchquerten Gases, x die Flugstrecke und q der Wirkungsquerschnitt.

⁹ Ch. Gerthsen, Physik. Berlin-Göttingen-Heidelberg: Springer. 1958.
 Monatshefte für Chemie, Bd. 102/4

⁸ L. Pauling, Die Natur der chemischen Bindung, Weinheim/Bergstr. 1964.

Tabelle 1. Relative Häufigkeiten H einiger stoßinduzierter Ionenzerfälle. H ist auf den Wert 100 für den stoßinduzierten Zerfall $PCl_3^+ \rightarrow PCl_2^+ + Cl$ bezogen und war auf $\pm 15\%$ reproduzierbar. Die Art der abgespaltenen Neutralteile (z. B. Cl₂ oder 2 Cl) ist unbekannt

Stoßinduzierter Ionenzerfall	Н	
$PCl_{3}^{+} \rightarrow PCl_{2}^{+} + Cl$ $\rightarrow PCl_{2}^{+} + 2 Cl$	100	
$PBr_{3}^{+} \rightarrow PBr_{2}^{+} + Br$ $\rightarrow PBr^{+} + 2 Br$	150 30	
$PCl_2Br^+ \rightarrow PCl_2^+ + Br$ $\rightarrow PCl_2r^+ + Cl$	100 20	
$\rightarrow PBr^{+} + 2 Cl$ $\rightarrow PCl^{+} + Cl + Br$	615	
$\begin{array}{c} \mathrm{PClBr}_{2^{+}} \rightarrow \mathrm{PClBr}^{+} + \mathrm{Br} \\ \rightarrow \mathrm{PBr}_{2^{+}} + \mathrm{Cl} \\ \rightarrow \mathrm{PBr}_{2^{+}} + \mathrm{Cl} + \mathrm{Pr} \end{array}$	$120 \\ 12 \\ 12$	
$\rightarrow PBr^+ + Cl + Br$ $\rightarrow PCl^+ + 2 Br$	13 ?	
$\begin{array}{l} \mathrm{PCl}_{2^{+}} \rightarrow \mathrm{PCl}^{+} + \mathrm{Cl} \\ \mathrm{PBr}_{2^{+}} \rightarrow \mathrm{PBr}^{+} + \mathrm{Br} \end{array}$	30 70	
$\begin{array}{l} \mathrm{PClBr^{+} \rightarrow PCl^{+} + Br} \\ \rightarrow \mathrm{PBr^{+} + Cl} \end{array}$	$\frac{45}{15}$	

Die Zahl N der nichtzerfallenden Ionen entspricht etwa der Ionenzahl, die unter normalen Meßbedingungen am Auffänger gemessen wird. Bei einer relativen Intensität des metastabilen Peaks $(N_0 - N)/N$ von 10^{-3} , einem Druck von 10^{-6} Torr und einer Flugstrecke von 70 cm beträgt der Wirkungsquerschnitt etwa 4 Å². Nur im Falle einer streifenden Kollision, bei der der Abstand zwischen Ion und Molekül in einem eng begrenzten Bereich von wenigen Å² liegt, erfolgt also ein Ionenzerfall, der registrierbare Tochterionen liefert. Ist der Abstand zu groß, so unterbleibt die Wechselwirkung, ist er zu klein, so wird das Ion abgebremst oder aus der Bahn soweit abgelenkt, daß es den Kondensator und Energiespalt nicht passieren kann.

Auftrittspotentialmessungen

Die *EDD*-Methode¹⁰ ermöglichte eine teilweise Auflösung der Feinstruktur der Ionenausbeutekurven und damit eine Entscheidung zwi-

¹⁰ a) R. E. Winters, J. H. Collins und W. L. Courchenne, J. Chem. Phys. 45, 1931 (1966); b) J. H. Collins, R. E. Winters und G. G. Engerholm, J. Chem. Phys. 49, 2469 (1968); c) I. I. O. Allinson und R. D. Sedgwick, Adv. mass spectrom. 4, 99 (1968).

schen verschiedenen Ionenbildungsreaktionen an der Ionisierungsschwelle: Die Bildung negativer Ionen durch eine heterolytische Spaltung wäre an einer nahezu stufenförmigen Ionenausbeutekurve erkennbar¹¹. Da eine solche Kurvenform nicht auftritt, wurden negative Ionen^{12, 13} in den Reaktionsgleichungen (Tab. 2) nicht berücksichtigt. Die in dieser Arbeit ermittelten Auftrittspotentiale der Ionen aus PCl₃ und PBr₃ stimmen bis auf wenige Ausnahmen mit Literaturwerten gut überein.

Der Fuß der Ionenausbeutekurve für P^+ zeigt einen Durchhang, der sich über mehrere eV erstreckt und die Angabe eines Auftrittspotentials problematisch macht. Das erste annähernd geradlinige Stück am Kurvenfuß liefert nach der *EDD*-Methode ein Auftrittspotential, das wesentlich tiefer liegt als einige Angaben in der Literatur. Geht man von diesem Auftrittspotential aus und nimmt man die Reaktion

$$\mathbf{P}X_3 \to \mathbf{P}^+ + X_2 - X + e^- \ (X = \text{Cl oder Br}) \tag{1}$$

an, so erhält man für Δ H_B (P⁺) einen Wert, der mit Literaturwerten gut übereinstimmt (Tab. 2). Im Gegensatz zu bisherigen Annahmen^{12a, 13, 15} kann daher vermutet werden, daß die P⁺-Bildung durch Reaktion (1) einsetzt und erst bei höherer Elektronenenergie zusätzlich oder ausschließlich die Reaktion

$$PX_3 \to P^+ + 3 X + e^- (X = \text{Cl oder Br})$$
(2)

abläuft.

Das Auftrittspotential von PCl_2^+ liegt bei Gemischen aus PCl_3 und PBr_3 um 0.6 eV tiefer als bei reinem PCl_3 . Dieses niedrigere Auftrittspotential A (PCl_2^+)_{PCl_2Br} entspricht der PCl_2^+ -Bildung aus PCl_2Br .

Der erste Knick in der Ionenausbeutekurve liegt ungefähr 0.7 eV über dem Auftrittspotential und entspricht zumindest zum Teil der PCl_2^+ -Bildung aus PCl_3 . Aus diesen beiden Auftrittspotentialen für PCl_2^+ (Tab. 2) erhält man bei Vernachlässigung möglicher Überschußenergien die Bildungsenthalpie von gasförmigem PCl_2Br :

 $\begin{array}{l} A \ (\mathrm{PCl}_{2^{+}})_{\mathrm{PCl}_{3}} = \Delta \ H_{B}(\mathrm{PCl}_{2^{+}}) + \Delta \ H_{B}(\mathrm{Cl}) - \Delta \ H_{B}(\mathrm{PCl}_{3})_{g} \\ A \ (\mathrm{PCl}_{2^{+}})_{\mathrm{PCl}_{2}\mathrm{Br}} = \Delta \ H_{B}(\mathrm{PCl}_{2^{+}}) + \Delta \ H_{B}(\mathrm{Br}) - \Delta \ H_{B}(\mathrm{PCl}_{2}\mathrm{Br})_{g} \end{array}$

¹¹ G. von Bünau und P. Potzinger, Ber. Bunsenges. Physik. Chem. 73, 473 (1969).

¹² a) *M. Halman* und *Y. Klein*, J. Chem. Soc. **1964**, 4324; b) *M. Halman* und *Y. Klein*, Adv. mass spectrom. **3**, 267 (1966).

¹³ R. W. Kiser, J. G. Dillard und D. L. Dugger, Advances in chemistry series **72**, 153 (1968), (Mass spectrometry in inorganic chemistry, Hrsg. J. L. Margrave).

Ion	A, K	Wahrscheinliche Reaktion	ΔH_B	A^*
a) Phosph	ortrichlorid			
PCl ₃ +	$10.5\pm0.1~(A)$	$\mathrm{PCl}_3 \rightarrow \mathrm{PCl}_3^+ + e^-$	706 ± 10	12.2^{14} 10.8^{15} 10.6^{12} 9.9^{16}
PCl_2^+	$11.9 \pm 0.1 (A)$	$\mathrm{PCl}_3 PCl_2^+ + \mathrm{Cl} + e^-$	716 ± 10	12.2^{14} 12.3^{15} 11.8^{12}
PCl+	12.0 ± 0.1 (K) 16.0 ± 0.2 (A)	$\begin{array}{l} \mathrm{PCl}_3 \rightarrow \mathrm{PCl}^+ + \ 2 \ \mathrm{Cl} + e^- \\ \rightarrow \mathrm{PCl}^+ + \ \mathrm{Cl}_2 + e^- \end{array}$	${992 \pm 20 \\ 1235 \pm 20}$	17.5^{14} 16.8^{16}
\mathbf{P}^+	$\begin{array}{c} 17.0 \pm 0.2 \ (K) \\ 17.9 \pm 0.2 \ (K) \\ 18.5 \pm 0.7 \ (A) \end{array}$	$\mathrm{PCl}_3 o \mathrm{P}^+ + \mathrm{Cl}_2 + \mathrm{Cl} + e^-$	1350 ± 70	16.5^{12} 22.1^{14}
			**	21.2^{15} 21.0^{12}
b) Phospi	nortribromia			
PBr_{3}^{+}	${ 10.1 \pm 0.1 \ (A) \over 10.9 \pm 0.2 \ (K) }$	$\mathrm{PBr}_3 o \mathrm{PBr}_3^+ + e^-$	825 ± 10	10.017
$\mathrm{PBr}_{2^{+}}$	$11.2 \pm 0.1 \ (A) \\ 12.0 \pm 0.1 \ (K)$	$\mathrm{PBr}_3 arrow \mathrm{PBr}_2^+ + \mathrm{Br} + e^-$	833 ± 10	11.4^{17}
PBr^+	$14.2 \pm 0.2 (A)$	$\mathrm{PBr}_3 o \mathrm{PBr}^+ + 2\mathrm{Br} + e^- \ o \mathrm{PBr}^+ + \mathrm{Br}_2 + e^-$	${\begin{array}{r} 1026 \pm 20 \\ 1218 \pm 20 \end{array}}$	15.6^{17}
	$rac{15.2\pm0.2~(K)}{16.3\pm0.2~(K)}$			
\mathbf{P}^+	$16.7 \pm 0.7 \ (A)$	$PBr_3 \rightarrow P^+ + Br_2 + Br + e^-$	$^+1360 \pm 70 _{**}$	20.11
c) Phosph	hortrichlorid + Ph	i os phortribrom id		
PCl_2Br^+	$10.4\pm0.1\;(A)$	$\mathrm{PCl}_2\mathrm{Br} o \mathrm{PCl}_2\mathrm{Br}^+ + e^-$	733 ± 10	
$PClBr_2^+$	$10.2\pm0.1~(A)$	$PClBr_2 \rightarrow PClBr_2^+ + e^-$	770 ± 10	
PCl_2^+	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} \mathrm{PCl}_{2}\mathrm{Br} \rightarrow \mathrm{PCl}_{2^{+}} + \mathrm{Br} + e^{-} \\ \mathrm{PCl}_{3} \rightarrow \mathrm{PCl}_{2^{+}} + \mathrm{Cl} + e^{-} \end{array}$	724 ± 10	
PBr_{2}^{+}	$11.3 \pm 0.1 (A)$ $12.2 \pm 0.1 (K)$	$\begin{array}{l} \mathrm{PBr_3} \rightarrow \mathrm{PBr_2^+} + \mathrm{Br} + e^- \\ \mathrm{PClBr_2} \rightarrow \mathrm{PBr_2^+} + \mathrm{Cl} + e^- \end{array}$	$\overset{842 \pm 10}{-}$	
PClBr ⁺	$egin{array}{rl} 11.3 \pm 0.1 (A) \ 12.2 \pm 0.1 (K) \ 13.2 \pm 0.2 (K) \end{array}$	$\begin{array}{l} \mathrm{PClBr}_{2} \rightarrow \mathrm{PClBr}^{+} + \mathrm{Br} + e^{-} \\ \mathrm{PCl}_{2}\mathrm{Br} \rightarrow \mathrm{PClBr}^{+} + \mathrm{Cl} + e^{-} \end{array}$	$783 \pm 20 \\ 783 \pm 20$	
*т:4		Zitat		

Tabelle 2. Auftrittspotentiale A und Knickpunkte K in den Ionenausbeutekurven sowie Bildungsenthalpien ΔH_B der Ionen. A und K in eV, ΔH_B in kJ/mol

* Literaturwerte mit Zitat.

** $\Delta H_B (P^+) = 1330 \text{ kJ/mol}^{20}$.

P. Kusch, A. Hustrulid und J. T. Tate, Physic. Rev. 52, 840 (1937).
 A. A. Sandoval, H. C. Moser und R. W. Kiser, J. Physic. Chem. 67, 124 (1963).

¹⁶ W. C. Price und T. R. Passmore, Discuss. Faraday Soc. 35, 232 (1963).

¹⁷ Y. Wada, Diss. Kansas State Univ., 1965; Diss. Abstr. 26, 122 (1965).

Subtraktion der Gleichungen liefert $\Delta H_B(\text{PCl}_2\text{Br})_g = -274 \pm 10 \text{ kJ/mol}^*$.

Die Ionenausbeutekurven von PBr₂⁺ haben bei reinem PBr₃ und bei Gemischen mit PCl₃ annähernd den gleichen Verlauf. Da die PBr₂⁺-Bildung aus PClBr₂ keinen zusätzlichen auflösbaren Knick in der Kurve liefert und da sie vermutlich höhere Energie als die PBr₂⁺-Bildung aus PBr₃ erfordert, wird angenommen, daß der erste Knick dem Auftrittspotential A (PBr₂⁺)_{PClBr₂} entspricht. Unter dieser Voraussetzung erhält man analog wie oben ΔH_B (PClBr₂)_g = --212 ± 10 kJ/mol*.

Aus der Ionenausbeutekurve von PClBr⁺ ergibt sich unter der Annahme, daß das Auftrittspotential (11.3 eV) und der erste Knick (12.2 eV) der PClBr⁺-Bildung aus PClBr₂ bzw. PCl₂Br entsprechen, eine Differenz der Bildungsenthalpien der Phosphorchloridbromide von 62 \pm 10 kJ/mol. Dies stimmt mit den vorher erhaltenen Werten überein.

Wie schon von $Wada^{17}$ diskutiert wurde, nehmen die Bildungsenthalpien der Ionen PX_n^+ (n = 1, 2, 3) in der Reihe X = Fluor, Chlor, Brom zu — entsprechend einer Abnahme der Stabilität der Ionen in der gleichen Richtung. Tab. 2 zeigt, daß diese Gesetzmäßigkeit auch für die gemischten Phosphortrihalogenide gilt.

Da Phosphortrijodid thermisch instabil ist (im Massenspektrum sind stets hohe Peaks von J⁺, HJ⁺ und J₂⁺ vorhanden)¹⁸, wurden von PJ₃ und den Jod enthaltenden gemischten Phosphortrihalogeniden nur die Auftrittspotentiale der Molekülionen bestimmt. Wegen der starken Intensitätsschwankungen der Ionen erfolgte die Auswertung der Ionenausbeutekurven in diesen Fällen nach der Methode der linearen Extrapolation (Tab. 3).

Wie Abb. 4 zeigt, steht die Ionisierungsenergie eines Phosphortrihalogenides in enger Beziehung zur durchschnittlichen Elektronegativität der Halogenatome. Dieser Zusammenhang ist anschaulich erklärbar, wenn man annimmt, daß die Ionisierung am freien Elektronenpaar des Phosphoratoms erfolgt. Dort wird sie um so leichter möglich sein, je kleiner die Elektronegativitäten der Halogenatome sind. PCl₂J und PBr₃ haben z. B. die gleiche durchschnittliche Elektronegativität der Halogenatome, und die elektronenanziehende Wirkung der Halogene sollte sich daher bei beiden Verbindungen etwa in gleicher Weise auf das freie Elektronenpaar am Phosphoratom auswirken. Tatsächlich haben

^{*} $\Delta H_B (\text{PCl}_3)_g = --306.4 \text{ kJ/mol}, \quad \Delta H_B (\text{PBr}_3)_g = --150.2 \text{ kJ/mol}, \\ \Delta H_B (\text{Cl}) = + 121.1 \text{ kJ/mol}, \quad \Delta H_B (\text{Br}) = + 96.4 \text{ kJ/mol}^{19}.$

¹⁸ D. L. Dugger, Diss. Kansas State Univ., 1967; Diss. Abstr. **B 28**, 1878 (1967).

Landolt-Börnstein, Zahlenwerte und Funktionen, 2. Bd., 4. Teil,
 Aufl. Berlin-Göttingen-Heidelberg: Springer. 1961.

Tabelle 3. Auftrittspotentiale A in eV (\pm 0.2 eV) der Molekülionen einiger Jod enthaltender Phosphortrihalogenide

 Ion	A	
 PJ_3^+ PCl_2J^+ $PClJ_2^+$ PB L_2^+	9.2* 10.1 9.7	ten dia 19 metatra di
PBr ₂ J+ PBrJ ₂ + PClBrJ+	9.7 9.5 10.1 **	

* Ein geschätzter Wert¹⁸ ist ebenfalls 9.2 eV.

** P³⁷Cl⁸¹BrJ⁺.

Abb. 4. Auftrittspotentiale A (Ionisierungsenergien) der Phosphortrihalogenide in Abhängigkeit von der durchschnittlichen Elektronegativität EN_{\varnothing} der Halogenatome. A (PF₃⁺) = 11.5 eV, nach Dugger¹⁸

PCl₂J und PBr₃ in Rahmen der Meßgenauigkeit gleiche Ionisierungsenergie. Die vorliegenden Versuchsergebnisse reichen jedoch nicht aus, um andere Darstellungen^{16, 17, 22} des Ionisierungsvorganges auszuschließen.

Der Oesterreichischen Nationalbank danken wir für die Bereitstellung der Mittel zum Ankauf des Massenspektrometers.

Experimenteller Teil

Diese Arbeit wurde mit einem Massenspektrometer SM 1 B-Varian MAT durchgeführt. Die Proben wurden über den Gaseinlaß eingeführt oder in einem beidseitig verschlossenen Indium-Zinn-Röhrchen in eine Schleuse des Einlaßsystems gebracht, wonach das Röhrchen bei etwa 110°C aufgeschmolzen wurde. Die Temp. des Einlaßsystems (Vorratsbehälter und Leitung) war 60 bis 70°C, die der Ionenquelle 140 bis 160°C. Die Elektronenenergie betrug, wenn nicht anders angegeben, 70 eV; der Elektronenstrom am Auffänger 260 μ A (bei Auftrittspotentialmessungen 20 μ A).

Stoßinduzierte Ionenzerfälle wurden mit der Defokussierungstechnik⁷ untersucht. Die Ionenbeschleunigungsspannung konnte zwischen 3 und 10 kV mit einer Einstellgenauigkeit von \pm 0.05% variiert und über einen Spannungsteiler mit einem Digitalvoltmeter gemessen werden. Die Linearität der Ionenstrommessung, die insbesonders für die Bestimmung der Druckabhängigkeit der metastabilen Peaks erforderlich ist, war im verwendeten Meßbereich (bis 10⁻¹² A Ionenstrom) gewährleistet.

Für die Auftrittspotentialmessungen dienten Argon und Kohlenmonoxid als Standards²⁰. Die Elektronenbeschleunigungsspannung konnte bei eingeschalteter Ionenbeschleunigungsspannung (8 kV) mit einem Digitalvoltmeter Hewlett-Packard 3440 mit einer Genauigkeit von \pm 0.01 eV gemessen werden. Das Gehäuse des Meßgerätes wurde zu diesem Zweck mit einer Meßleitung verbunden und dadurch auf 8 kV gelegt. Das Digitalvoltmeter befand sich gut isoliert in einem geerdeten Kasten und wurde über einen Trenntransformator mit Netzspannung versorgt.

Infolge des Abströmens der Probe aus dem Vorratsbehälter des Einlaßsystems (Inhalt etwa 700 cm³) sinkt der Ionenstrom I innerhalb von 15 bis 30 Min. auf die Hälfte. Da die Bestimmung einer Ionenausbeutekurve 10 bis 20 Min. dauerte, war eine Korrektur der Meßwerte erforderlich. Nach der Formel lg $I_0 = \lg I_t + z \cdot t^{20}$ wurden die zur Zeit t gemessenen Ionenstromwerte I_t auf den Zeitpunkt t = 0 (Beginn der Messung) umgerechnet. Die Konstante z ist vom Molekulargewicht der Probe und von den Vakuumbedingungen abhängig; sie wurde für jede einzelne Ionenausbeutekurve aus einem Anfangswert und einem Endwert berechnet. Anschließend erfolgte nach der Methode von Savitzky und Golay²¹ eine Glättung der Ionenstromwerte (Glättungsfunktion 2. bzw. 3. Grades, fünf Meßpunkte). Aus den geglätteten Werten wurden nach der EDD-Methode¹⁰ die Ionenstromdifferenzen ΔI berechnet (b = 0.70). Die EDD-Auswertung verminderte die Krümmung am Fuß der Ionenausbeutekurven, konnte sie aber nicht zufriedenstellend beseitigen. Wie die zweite Ableitung der Ionenausbeutekurve von CO+ zeigte, wich die Elektronenenergieverteilung stark von einer Maxwellverteilung ab. Die numerische Auswertung wurde mit einer IBM 7040 im Rechenzentrum der Technischen Hochschule Wien mit einem FORTRAN-Programm durchgeführt.

Phosphortrichlorid und Phosphortribromid wurden in der Qualität "Suprapur" von Merck, Phosphortrijodid (98%) von Schuchardt bezogen. Die erforderlichen Mischungen wurden mindestens 24 Stdn. vor ihrer Verwendung hergestellt.

²⁰ H. Kienitz, Massenspektrometrie, Weinheim/Bergstr. 1968.

²¹ A. Savitzky und M. J. E. Golay, Anal. Chem. 36, 1627 (1964).

²² C. M. Humphries, A. D. Walsh und P. A. Warsop, Discuss. Faraday Soc. 35, 148 (1963).